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Transformation optics has been an essential tool for designing cloaking devices for electromag-

netic and acoustic waves. All these designs have one requirement in common: material singular-

ity. At the interface between the cloak and the cloaked region, some material properties have to

approach infinity, while some others approach zero. This paper attempts to answer a central ques-

tion in physically realizing such cloaks: is material singularity a requirement for perfect cloak-

ing? This paper demonstrates that, through optimization, perfect cloaking can be achieved using

a layered cloak construction without material singularity. Two examples are used for this demon-

stration. In one example, the initial design is based on the Cummer–Schurig prescription for

acoustic cloaking that requires mass-anisotropic material. Another example uses the two isotropic

layers to achieve the equivalent mass-anisotropy for each anisotropic layer. During the optimiza-

tion processes, only material properties of cloaks’ constituent layers are adjusted while the geo-

metries remain unchanged. In both examples, the normalized total scattering cross section can be

reduced to 0.002 (0.2%) or lower in numerical computations. The capabilities and other charac-

teristics of the optimization in other tasks such as cloaking penetrable objects and isolating strong

resonance in such objects are also explored.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4744979]
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I. INTRODUCTION

In the past few years, the topic of cloaking has

attracted significant research interest since the demonstra-

tion of cloaking for microwaves.1 The design was based on

transformation optics.2,3 In essence, a simply connected

region is transformed into a region with an opening in its

interior, a multi-connected region. If this new space is the

physical space, anything inside the opening would be

invisible and hence “cloaked.” The transformation dictates

the material properties required for the cloak, the trans-

formed region. Since then, many cloaking designs, for both

electromagnetic and acoustic waves, have been proposed.

In general, the required material properties are rather

“otherworldly.” The collective efforts by the research com-

munity to design and characterize man-made materials that

can effectively behave the way as prescribed in various

designs have led to the emergence of a new area of research

called “metamaterials.”

This paper is focused on acoustic cloaking. Among

many proposed designs for acoustic cloaking, the most im-

portant one, the canonical design, was proposed by Cummer

and Schurig.4 The Cummer–Schurig design of a circular

acoustic cloak requires a mass-anisotropic material whose

properties vary along the radial direction in the following

prescribed manner:

qr

q0

¼ r

r � a
; (1)

qh

q0

¼ r � a

r
; (2)

K

K0

¼ b� a

b

� �2 r

r � a
; (3)

where parameters with subscript 0 belong to the host me-

dium; q and K are the mass density and bulk modulus,

respectively; and a and b are the inner and outer radii of the

cloak, respectively. The mass anisotropy is assumed to be

orthotropic, having a diagonal mass density tensor when

written in the polar coordinate system (r, h) that originates at

the center of the cloaked region.

There are two significant challenges in this prescription

when one attempts to physically realize such a cloak. The

first is the mass anisotropy, which is not a commonly

observed feature in any material that can be found in the nat-

ural world. The second challenge is the material singularity:

at the interface between the cloak and the cloaked region,

r¼ a, the prescription requires qr !1 and K !1, while

qh ! 0.

The mass anisotropy can probably be addressed by the

idea of using two isotropic layers to mimic an anisotropic

layer.5,6 The effective mass-anisotropic material properties

obtained from homogenizing two isotropic layers, denoted

as layers A and B, are

qr ¼
1

1þ g
ðqA þ gqBÞ; (4)

1

qh
¼ 1

1þ g
1

qA

þ g
qB

� �
; (5)

1

K
¼ 1

1þ g
1

KA
þ g

KB

� �
; (6)

where g is the thickness ratio of layer B to layer A. An

in-depth analysis of this analogy has recently been given by

the author and his colleague.7 With the possibility of such,

the research community appears to have reached a consensus
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that a feasible approach is to use a layered structure to ap-

proximate the continuously varying properties of the

Cummer–Schurig prescription. Inevitably, such an approxi-

mation, in conjunction with the physical unachievability of

material singularity, would sacrifice the effects of cloaking,

leading to an imperfect cloak.

Recently, a non-singular cloak design based on the

transformation optics has been proposed:8 Instead of a math-

ematical point, a tiny opening is transformed into a sizable

opening in the physical space. However, the resulting cloak

is imperfect, and yet it still requires that one of the mass den-

sity components approach zero, which might be viewed as

another form of singularity.

In this author’s opinion, such imperfection should only

be viewed with regards to precisely following the prescrip-

tion of transformation optics. In regard to cloaking effects, a

more philosophical question should be asked first: Is the ma-

terial singularity a requirement for perfect cloaking? Or, is it

just an inconvenient artifact due to the use of transformation

optics? This paper attempts to bring an optimistic answer to

this question.

In this paper, various optimization schemes are used to

fine tune the parameters in layered cloaks, while using the

Cummer–Schurig prescription as initial designs. It is demon-

strated that, numerically and from an engineering perspec-

tive, material singularity is not a requirement. With finite

values in acoustic properties and a finite number of uniform

layers, perfect cloaking can be achieved.

This paper is organized as follows. Section II describes

the details of the optimization process. Section III demon-

strates the perfect cloaking without material singularity with

two examples, both based on the Cummer–Schurig prescrip-

tion, for cloaking a rigid cylinder, as intended in the ideal

Cummer–Schurig cloak. Section IV explores the behaviors of

the optimized cloaks when they are used to cloak penetrable

objects, and what object-specific optimizations are capable of.

Section V offers a brief discussion on some characteristics of

the optimization processes. The paper is concluded in Sec. VI.

II. OPTIMIZATION PROCEDURES

A solution to a problem can be optimized if there are al-

ternative solutions and there is a quantitative way of telling

which is the better solution. It is formulated into an optimi-

zation problem by introducing the objective function that

quantifies the goodness of a solution, and a set of optimiza-
tion variables that can be varied to arrive at different solu-

tions. Then, this optimization process is concerned with

finding the minimum of the objective function within the

allowable range of the optimization variables.

A. The objective function

For cloak designs, there is a well-defined and widely used

scalar quantity called the “total scattering cross section” that

naturally fits as the objective function to minimize. The total

scattering cross section is defined as the total energy scattered

by a scatterer over a closed surface enclosing the scatterer and

normalized by the energy flux of the planar incident wave.

The total scattering cross section is a positive-semidefinite pa-

rameter, which vanishes only when the scatterer is completely

invisible, or being perfectly cloaked. It has the unit of an area;

and in the high frequency limit, it approaches the geometric

cross-sectional area of the scatterer. For this reason, the total

scattering cross-section is often further normalized by its geo-

metric cross-sectional area, which, for the case of a cylindrical

scatterer, is the diameter of the scatterer.

Scattering problems are often solved by using modal

expansions in which different waves are expanded into dif-

ferent modes. The T-matrix is the matrix that relates the

wave expansion coefficients of the scattered wave to those

of the incident wave. In essence, it represents the complete

solution to a single scattering problem. For an axisymmetric

scatterer, its T-matrix is diagonal; and the expression for its

normalized scattering cross section can be written as

~r ¼ 2

pka

X1
n¼�1

j½T�nj
2; (7)

where [T]n is the entry of its T-matrix at the n-th column and

the n-th row, and the total scattering cross section has been

normalized by the diameter of the cloaked region, 2a.
A computational procedure for evaluating the T-matrix

and other scattering characteristics for multi-layered two-

dimensional scatterers has been developed by the author and

his colleagues.9,10 A similar scheme for three-dimensional

scatterers has also been developed recently.11 This is an iter-

ative scheme for analyzing a scatterer comprised of an arbi-

trary number of concentric layers, yielding analytically exact

solutions for the T-matrix. Combined with the solutions to

scattering problems in mass-anisotropic materials,12 this

scheme has allowed the author and his colleague to analyze

the original Cummer–Schurig cloak,12 by approximating the

continuously varying cloak as a multi-layered cloak, with

each layer being made of an uniform anisotropic material.

B. Optimization schemes

Broadly speaking, there are three classes of well-

established and widely used optimization schemes. They

require the capabilities of evaluating the zeroth- (the func-

tion itself), the first-, and the second-derivatives, respec-

tively, of the objective function. The direct search method,

gradient method, and quasi-Newton’s method are the repre-

sentative examples of these classes. The first class would be

too slow for cloak optimization since each cloak design

involves a large number of parameters, each of which has a

cast range of material properties to choose from. Having

only the numerical tool to evaluate the objective function,

the evaluation of the second derivative is unreliable. Thus,

the gradient-based method is the most suitable choice.

The classic gradient-based method is the so-called

“steepest descent method.” For a multivariable function, the

negative of the gradient at a point points to the direction of

the steepest descent. Heuristically this would be the best

direction to march toward minimizing the objective function.

The search marches in the following manner: at the n-th step

in the optimization process, the next optimal parameter set is

determined by
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xnþ1 ¼ xn � hnr~rjxn
; (8)

where hn is the step size, and x denotes the set of parameters

(optimization variables) that affects the objective function.

Typically hn is determined at each step such that it reaches

the minimum in that particular direction. In determining the

step size, one-dimensional optimization schemes can be

used.

A variation to this is the so-called “conjugate gradient

method,” in which the search direction is modified, to avoid

the zigzagness of the search path. The modified direction,

denoted as dn, is expressible as

dn ¼ �r~rjxn
þ bndn�1 (9)

and the new parameter set is

xnþ1 ¼ xn þ hndn: (10)

There are different approaches to correcting the search direc-

tion for general nonlinear objective functions, giving different

expressions for bn. The readers are referred to many textbooks

on nonlinear optimization, such as Ref. 13, for specific vari-

eties. Specifically, the formulas of Hestenes–Stiefel, Fletcher–

Reeves, and Polak–Ribi�ere have all been implemented.

In the optimization schemes used in this paper, the step

size hn is determined in the following manner. First, a maxi-

mum allowable step size hmax is defined a priori. This is a

safeguard to avoid the parameters being changed too drasti-

cally within a step. Within a search step, hmax is taken as the

initial trial step size and the corresponding trial parameter

set is denoted as xtrail
nþ1. If ~rðxtrail

nþ1Þ < ~rðxnÞ, hmax is not large

enough to bring the search to the minimum in this direction.

But it is used as the step size since it is the maximum allow-

able size. Otherwise, the step size is reduced by a certain

percentage set a priori, which in turn defines a new trial pa-

rameter set. This process is repeated until the condition

~rðxtrail
nþ1Þ < ~rðxnÞ is reached.

By this time, if hmax has not been taken as the step size,

at least three parameter sets have been identified: the current

parameter set xn, the latest trial parameter set denoted as

xtrail
1 , and the previous (next to the last) trial parameter set

denoted as xtrail
2 . They correspond to three points on the

h� ~r plane along the search direction, with abscissas at 0,

htrail
1 , and htrail

2 . They satisfy the following relations:

0 < htrail
1 < htrail

2 and ~rðxtrail
1 Þ < ~rðxnÞ < ~rðxtrail

2 Þ. These

three points can be fitted with a parabolic curve, a process

known as the “inverse parabolic fitting.”14 The fitted curve

has its minimum within the range ð0; htrail
2 Þ, located at

hn ¼ htrail
1 � 1

2

ðhtrail
1 Þ

2½~rðxtrail
1 Þ � ~rðxtrail

2 Þ� � ðhtrail
1 � htrail

2 Þ
2½~rðxtrail

1 Þ � ~rðxnÞ�
htrail

1 ½~rðxtrail
1 Þ � ~rðxtrail

2 Þ� � ðhtrail
1 � htrail

2 Þ½~rðxtrail
1 Þ � ~rðxnÞ�

: (11)

If desired, the inverse parabolic fitting can be repeated to

refined the parameter set that would minimize the objective

function. Since this is only an intermediate step in the opti-

mization process, precisely locating the minimal point in a

trial direction is not crucial. In the optimization schemes

used in this paper, the inverse parabolic fitting is only per-

formed once.

The optimization is considered converged if the objec-

tive function evaluated with the new parameter set falls

below the target value. On the other hand, if the search in the

gradient or conjugate gradient direction requires a step size

that is extremely small, the optimization is considered

stalled.

In this paper, optimizations are run unconstrained.

III. PERFECT CLOAKING WITHOUT MATERIAL
SINGULARITY

In this section, examples are used to demonstrate that

perfect cloaking with a finite number of uniform layers

without material singularity is possible. In the numerical

optimization runs, the criterion for the convergence is

~r < 0:002 ð0:2%Þ: (12)

Two designs are considered.

A. Cloak with anisotropic layers

The first cloak to be optimized consists of five aniso-

tropic layers of equal thickness, based on the Cummer–

TABLE I. Material properties for cloak comprised of five anisotropic layers, including both initial and optimized designs.

qr/q0 qh/q0 cr/c0 K/K0

Layer ri Initial Optimized Change (%) Initial Optimized Change (%) Initial Optimized Change (%) Initial Optimized Change (%)

1 1.36 3.7778 3.7746 �0.08365 0.26471 0.27256 2.964 0.28571 0.28383 �0.6603 0.30839 0.30408 �1.399

2 1.28 4.5714 4.5681 �0.07175 0.21875 0.22058 0.8366 0.28571 0.29207 2.225 0.37318 0.38969 4.426

3 1.20 6.0000 5.9960 �0.06717 0.16667 0.17454 4.724 0.28571 0.28700 0.4501 0.48980 0.49388 0.8344

4 1.12 9.3337 9.3115 �0.2374 0.10714 0.11424 6.625 0.28571 0.28491 �0.2831 0.76193 0.75582 �0.8015

5 1.04 26.000 26.011 0.04269 0.038463 0.038393 �1.812 0.28571 0.34365 20.28 2.1224 3.0718 44.73
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Schurig prescription. The cloak thickness is 40% of the ra-

dius of the cloaked region; that is, b¼ 1.4a. Each layer is

assumed to be uniform, having material properties as pre-

scribed by Eqs. (1)–(3) at each layer’s median radius. The

host is assumed to be water, of a mass density of 1000 kg/

m3, and a sound speed of 1350 m/s. The cloaked region is

assumed to be rigid.

The optimization is focused on the material properties of

individual layers. The geometry, the number of layers, and the

properties of the cloaked region are not altered during the

optimization. The computation of the normalized total scatter-

ing cross section uses the radial and circumferential mass den-

sities and the radial sound speed. The bulk modulii and the

circumferential sound speeds are not used. Thus, the optimiza-

tion variables include only the mass densities and the radial

sound speeds of individual layers, totaling 15 parameters.

During the optimization, the scattering cross section is eval-

uated at ka¼ 5. The optimization runs with different schemes

converge typically within 8–10 iterations, from an initial nor-

malized total scattering cross section of ~r ¼ 0:21816. They

generally converge rapidly, with every step making a signifi-

cant reduction in the total scattering cross section.

The material properties for the initial and the optimized

designs are listed in Table I. In Table I, the ri column lists

the median radius for each layer where Eqs. (1)–(3) are eval-

uated and taken as the layer’s uniform properties. The

“change” columns list the percentage changes of material

properties in the optimized design from the initial design. It

can be seen that the changes are rather mild, with the largest

being 20% increase in radial sound speed for the inner-most

layer: from 385.7 to 463.9 m/s.

A snapshot of the pressure field (the real part of the

complex amplitude of acoustic pressure) for the optimized

design is compared with that of the initial design in Fig. 1,

when an planar incident wave of frequency ka¼ 5, the fre-

quency at which the optimization is run, impinges onto the

cloaked cylinder. The normalized total scattering cross sec-

tion of both designs are compared in Fig. 2 over the fre-

quency range from ka¼ 0 to 6.

It can be observed from Figs. 1 and 2 that, although the

initial design already has excellent cloaking capability, the

optimization process is able to reduce the total scattering

cross section further by two orders of magnitude, to a level

that can be justifiably called perfect cloaking in any practical

sense. Although the Cummer–Schurig design is frequency

independent, the total scattering cross section in general is

frequency dependent. And yet, the lack of mass singularity

certainly adds a degree of frequency dependency. The initial

design exhibits its frequency dependency as early as ka¼ 2,

as indicated by the significant rate of increase in the scatter-

ing cross section. The optimized design defers this occur-

rence until ka¼ 5, the frequency at which the optimization

was run.

B. Cloak with isotropic layers

The second cloak to be optimized is also based on the

five anisotropic layers as prescribed by the Cummer–Schurig

design in Eqs. (1)–(3), but each anisotropic layer is then

replaced by a pair of isotropic layers, using Eqs. (4)–(6). In

other words, it consists of ten isotropic layers. The overall

thickness of the cloak is 20% of the cloaked region; that is,

b¼ 1.2a.
Note that Eqs. (4)–(6) are not sufficient for determining

all the parameters of both isotropic layers. One additional

condition is needed.7 Assuming that the two layers are of

equal thickness, that is, g¼ 1, then, Eqs. (4) and (5) give

qA;B ¼ qr6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qrðqr � qhÞ

p
: (13)

Assuming that the bulk modulii of the two isotropic layers

are proportional to their mass densities, that is KA/KB¼ qA/

qB, then Eq. (6) gives

FIG. 1. (Color online) Snap shots of

total wave field when a planar inci-

dent wave of frequency ka¼ 5

impinges onto a cloaked rigid cylin-

der. The cloak is comprised of five

anisotropic layers based on the

Cummer–Schurig prescription. Left:

initial design. Right: optimized

cloak.

FIG. 2. (Color online) Normalized total scattering cross section of the cloak

comprised of five anisotropic layers. Solid: optimized cloak. Dashed: initial

design.
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KA ¼
K

2
1þ qA

qB

� �
; KB ¼

K

2
1þ qB

qA

� �
: (14)

This way, the two layers have the same sound speed, ensur-

ing the wave numbers in both layers being in the same order.

In evaluating the total scattering cross section, the mass

densities and sound speeds of individual layers are used.

Bulk modulii are not used. Thus the optimization variables

include the mass densities and sound speeds of individual

layers, 20 in total. The optimization was run at ka¼ 3. Com-

pared with the anisotropic cloak, the optimization runs for

this cloak converge much slower after the initial few itera-

tions, and generally taking 40–50 iterations. The initial nor-

malized scattering cross section is ~r ¼ 0:50201, which is

approximately 2.3 times of the first example. But this differ-

ence is diminished after the first iteration.

The material properties of both the initial design and the

optimized design are listed in Table II. The ri column in

Table II lists the median radius at which Eqs. (1)–(3) are

evaluated for the corresponding five-anisotropic layer

design. For this reason, each pair has the same ri value,

which is also the radius of the interface of the two layers.

The isotropic layer pairs are arranged such that the lighter

layer is located outside (with an odd layer number), and the

heavier layer is inside (with an even layer number). It is

observed that all the large percentage changes in the material

properties listed in Table II belong to the lighter layers, and

the changes in absolute values are rather small.

The distributions of amplitude of the total acoustic pres-

sure surrounding the cloaked rigid cylinder when a planar

incident wave of frequency ka¼ 3, the frequency at which

the optimization is run, impinges onto the cloaked cylinder

are shown in Fig. 3 for both initial and the optimized

designs. The normalized total scattering cross sections of

both the initial design and the optimized design are com-

pared in Fig. 4 over the frequency range from ka¼ 0 to 6.

From Fig. 4, a strong frequency dependency is observed

in both initial and optimized designs. The main reason for

such frequency dependency is that the equivalence between a

pair of isotropic layers and a single anisotropic layer is valid

only at low frequencies, as the first order approximation.7 As

the frequency increases, the equivalence deteriorates, and the

frequency dependency emerges. Figure 4 suggests that this

likely starts at a frequency as low as ka � 1, as indicated by

the significant rate of increase in the scattering cross section

of the initial design. However, the optimization is able to

maintain excellent cloaking effects over a much wider fre-

quency range, until ka � 3, the frequency at which the optimi-

zation was run. As with the anisotropic cloak, the frequency

at which the optimization was run appears to have set the

upper frequency limit for cloaking effectiveness.

IV. CLOAKING PENETRABLE OBJECTS

Cloaking penetrable objects is more challenging than

cloaking a rigid object, because penetrable objects can

TABLE II. Material properties for cloak comprised of ten isotropic layers, including both initial and optimized designs.

q/q0 c/c0 K/K0

Layer ri Initial Optimized Change (%) Initial Optimized Change (%) Initial Optimized Change (%)

1 1.18 0.076720 0.10341 34.79 1.0926 0.98023 �10.28 0.091585 0.099362 8.492

2 1.18 13.034 13.075 0.3084 1.0926 1.0923 �0.03119 15.560 15.598 0.2459

3 1.14 0.061637 0.062430 1.284 1.3571 1.3089 �3.556 0.11353 0.10695 �5.791

4 1.14 16.224 16.228 0.0240 1.3571 1.3570 �0.01037 29.882 29.883 0.003294

5 1.10 0.045549 0.028911 �36.53 1.8333 1.7547 �4.287 0.15310 0.089019 �41.85

6 1.10 21.955 21.957 0.0100 1.8333 1.8333 �0.004040 73.792 73.793 0.001939

7 1.06 0.028325 0.023216 �18.04 2.9444 2.9173 �0.9225 0.24557 0.19758 �19.54

8 1.06 35.305 35.308 0.009347 2.9444 2.9444 �0.0002516 306.09 306.11 0.008844

9 1.02 0.0098050 0.0099610 1.588 8.5000 8.4915 �0.06885 0.70840 0.71866 1.449

10 1.02 101.99 101.99 0 8.5000 8.5000 0 7368.8 7368.8 0

FIG. 3. (Color online) Distribution of ampli-

tudes of total acoustic pressure when a planar

incident wave of frequency ka¼ 3 impinges

onto a cloaked rigid cylinder. The cloak is com-

prised of ten isotropic layers. Left: initial

design. Right: optimized cloak.
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resonate at certain frequencies. The ideal Cummer–Schurig

cloak, even with material singularity, is penetrated at reso-

nant frequencies.12 Therefore, it would be interesting to

observe how the optimized cloaks behave when they are

used to cloak a penetrable object, and whether the optimiza-

tion can be utilized to alleviate the problems that may arise.

First, the behaviors of the two cloaks optimized for rigid

cylinders are observed when the rigid cylinder is replaced by

a penetrable object. In this case, the cloaked region is filled

with water, the same as the host medium. The normalized

total scattering cross section of both cloaks are shown in

Figs. 5 and 6, in comparison with their respective initial

designs.

It can be observed that, when the core is replaced by the

water column, there is a very strong resonance at ka � 0.7,

and followed by a few weaker ones. Note that the two cloaks

have different thicknesses and different material properties,

and yet two of the resonances occurred at the same fre-

quency in both cases (at ka � 0.7 and 3.9), and two other

resonances shifted slightly, to lower frequencies for the thin-

ner isotropic cloak.

For the anisotropic cloaks, the overall performances of

the initial and the optimized designs are very similar. The

optimized cloak performs slightly better. For the isotropic

cloaks, the optimized cloak performs significantly better

than the initial design, especially in the frequency range

between the first the third resonances. This means that the

optimization has indeed made both cloaks perform better

even when the object to be cloaked is changed from what

they are optimized for. For the two initial designs, the aniso-

tropic cloak yields significantly smaller scattering cross sec-

tion than the isotropic cloak. But, for the two optimized

cloaks, the isotropic cloak performs better.

Second, the same optimization process is run to specifi-

cally optimize for cloaking the water column, ka¼ 3. The

initial normalized scattering cross section for the two cloaks

are ~r ¼ 0:40612 for the anisotropic cloak and 1.14615 for

the isotropic cloak. The optimization takes 184 iterations for

the anisotropic cloak and 34 iterations for the isotropic cloak

to converge, just opposite to the case when cloaking a rigid

cylinder. It is also worthy of noting that the optimization for

the anisotropic cloak at ka¼ 4 and 5 stalled in just a few iter-

ations, although the reduction in the scattering cross section

might be significant, it could not reach the goal value.

The normalized total scattering cross section of both

water-column-optimized cloaks are shown in Figs. 7 and 8

in comparison with their respective initial designs. The opti-

mization does not alter the strong resonance noticeably, but

it generally reduces the scattering cross section over a broad

frequency range between the first and third resonances. The

isotropic cloak performs better after the optimization. How-

ever, for the case of anisotropic cloak, it seems that the opti-

mized design has introduced its own resonance at ka � 6.

Third, the same optimization process is run at the

strongest resonance frequency ka¼ 0.7 for both cloaks. The

initial normalized scattering cross section for the two cloaks

are ~r ¼ 5:72531 for the anisotropic cloak and 5.70708 for

FIG. 4. (Color online) Normalized total scattering cross section of the cloak

comprised of ten isotropic layers. Solid: optimized cloak. Dashed: initial

design.

FIG. 5. (Color online) Normalized total scattering cross section of the cloak

comprised of five anisotropic layers when it is used to cloak a water column.

Solid: optimized for cloaking a rigid cylinder. Dashed: initial design.

FIG. 6. (Color online) Normalized total scattering cross section of the cloak

comprised of ten isotropic layers when it is used to cloak a water column.

Solid: optimized for cloaking a rigid cylinder. Dashed: initial design.

FIG. 7. (Color online) Normalized total scattering cross section of the cloak

comprised of five anisotropic layers when it is used to cloak a water column.

Solid: optimized for cloaking water column at ka¼ 3. Dashed: initial

design.
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the isotropic cloak. The optimization processes appear to be

much more “strenuous,” as the total scattering cross sections

of the initial designs are one order of magnitude larger than

the previous cases, and more than three orders of magnitude

larger than the target value. The optimization converges after

531 iterations for the anisotropic cloak and 4636 iterations

for the isotropic cloak, with the maximum allowable step

size being taken in most of these steps. These large numbers

of iteration steps mean that material properties have deviated

significantly from the initial designs. Figure 9 shows the nor-

malized total scattering cross section of both designs opti-

mized specifically for suppressing the resonance at ka¼ 0.7.

Figure 9 shows a general loss of the cloaking capability

of both cloaks. This is expected, due to the large numbers of

optimization iterations. However, the following two impor-

tant observations from this experiment can be made. The

first is that the results demonstrate the remarkable power of

optimization for achieving perfect cloaking at the strongest

resonant frequency. Of course, this is achieved at a cost. The

second is that the cloaking capabilities of both cloaks are

essentially maintained for frequencies below ka¼ 0.7, yet

again, the frequency at which the optimization is run. Of the

two optimized cloaks, the isotropic cloak performs better

throughout the entire frequency range.

It is also of interest to observe what happens to the reso-

nance with the optimized cloaks. Figure 10 shows the snap

shots of the pressure field in the vicinity of the anisotropic

cloak due to an impinging planar incident wave of frequency

ka¼ 0.7. It can be seen that the resonance remains, as indi-

cated by the large amplitude inside the water column. How-

ever, the optimized cloak is capable of completely confining

the resonance to within the water column without leaving

any trace to the exterior. Figure 11 show the amplitude dis-

tribution of the total acoustic pressure near the water column

cloaked by the isotropic cloak due to an impinging planar

incident wave of frequency ka¼ 0.7. This optimized cloak is

also capable of completely confining the resonance inside

the water column without leaving a trace to the exterior. In

view of suppressing and isolating the resonance, both opti-

mized cloaks work extremely well.

V. DISCUSSIONS

Having observed a few cases of perfect cloaking, at least

when cloaking a rigid cylinder, being achieved without ma-

terial singularity, one question immediately arises: at what

price? The answer is that such a perfect cloaking is effective

only limited to a certain frequency range.

The original design as proposed by Cummer and

Schurig, requiring mass-anisotropy and material singularity,

is a frequency-independent design.12 This characteristic is

largely inherited when using anisotropic layers, optimized or

not, making such cloaks weakly frequency dependent. The

FIG. 8. (Color online) Normalized total scattering cross section of the cloak

comprised of ten isotropic layers when it is used to cloak a water column.

Solid: optimized for cloaking water column at ka¼ 3. Dashed: initial

design.
FIG. 9. (Color online) Normalized total scattering cross section of two

cloaks specifically optimized for cloaking water column at ka¼ 0.7 where

the initial designs of both cloaks show strong resonance. Solid: cloak com-

prised of five anisotropic layers. Dashed: cloak comprised of ten isotropic

layers. Note the cloaking capability remains in the frequency range ka< 0.7

for both cloaks.

FIG. 10. (Color online) Snap shot of

acoustic pressure field when a planar

incident wave of frequency ka¼ 0.7

impinges onto a cloaked resonating

water column. The cloak is com-

prised of five anisotropic layers.

Left: initial design. Right: cloak spe-

cifically optimized for cloaking at

the resonant frequency.
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cloaks based on the Cummer–Schurig prescription but using

the isotropic equivalent layers have an additional level of

frequency dependency: the isotropic-anisotropic equivalence

is valid only at low frequencies. The frequency at which the

optimization is run plays an extremely important role.

In the way the optimization is currently run, the objec-

tive is to reduce the total scattering cross section at one par-

ticular frequency, and whatever happen at other frequencies

are totally disregarded. Yet, it has been repeatedly observed

that the frequency at which the optimization is run deter-

mines the upper frequency limit of the cloaking effective-

ness. The main reason for this is that these cloak designs are

weakly frequency dependent. One frequency effectively rep-

resents all frequencies, until the frequency dependency

becomes sufficiently strong.

For such weakly frequency-dependent cloaks, one exam-

ple, in Sec. II A, shows that running the optimization at a fre-

quency when the frequency dependency has become

noticeable may actually extend the frequency range of the

cloaking effectiveness. However, running the optimization at

higher frequencies may also risk losing the cloaking effective-

ness entirely. For example, in one attempt to optimize the ten-

layer isotropic cloak at ka¼ 6, the normalized total scattering

cross section at ka¼ 6 was reduced from 0.9 to 0.6, but it was

increased from 0.05 to 2.0 and more in lower frequencies.

When cloaking strongly frequency dependent objects,

the situation is different. Cloaking penetrable objects falls in

this category, as even the Cummer–Schurig cloak becomes

frequency-dependent.12 For such cloaks, some compromises

maybe needed, and Figs. 6 and 8 and Fig. 9 suggest a way to

select the optimization frequency, depending on the desired

outcome. If the suppressing a strong resonance is important,

the cloak can be optimized to confine the resonance within

the cloaked region. If, on the other hand, the primary goal is

to have a wider frequency range in which cloaking is effec-

tive, the optimization can be run at those frequencies.

The current study has been focused on the possibilities

the optimization may bring, and more importantly, on the

question of whether the material singularity is a necessary

condition for perfect cloaking. Although various optimiza-

tion schemes have been implemented and used, the relative

merits of one scheme over another have not been studied.

However, the computations performed in this study show

that different optimization runs, with different parameters or

different schemes, lead to different parameter sets when they

converge. The differences in general are not significant, but

are not negligible, either. In other words, the optimization

does not converge to the same solution. For this reason,

throughout this paper, the outcome of an optimization run is

called an optimized design, instead of an “optimal design.”

Another case to the point is when optimizing the cloak spe-

cifically for cloaking a water column. Intuitively, the

“optimal” material choice for the cloak is water, because it

will produce zero scattering cross section at any frequency.

Interestingly enough, none of the optimization runs has

reached that obvious “optimal design.” This suggests that all

the optimized designs obtained so far, in fact, in optimization

terminology, are local minima.

VI. CONCLUSIONS

In this paper, gradient-based optimization schemes are

used to fine tune the material properties of cloak designs

based on the Cummer–Schurig cloaking prescription. It is

demonstrated that, without material singularity and with a

limit number of layers, the optimization is capable of reduc-

ing the normalized total scattering cross section to 0.002 or

lower, a level that can be justifiably called perfect cloaking.

In other words, material singularity is not a requirement for

perfect cloaking. The removal of material singularity

requirement would make the road to physical realization of

perfect cloaking slightly easier, although other significant

challenges remain. The price to pay for this advantage is that

such a perfect cloaking is effective only within a limited, but

still broad-band, frequency range.

Numerical examples also demonstrate that cloaks opti-

mized for rigid objects also performed better than the ini-

tially design, when the cloaked object is changed. The

optimization is even capable of suppressing a strongly reso-

nant penetrable object at its resonance frequency, to com-

pletely confine the resonance to within the cloaked region,

although at a cost of losing cloaking capability in most other

frequencies. These examples demonstrate that, even if per-

fect cloaking is not the ultimate goal, optimization has great

potential in many practical applications such as minimizing

the target strength with given constraints in materials.

FIG. 11. (Color online) Distribution

of amplitudes of total acoustic pres-

sure when a planar incident wave of

frequency ka¼ 0.7 impinges onto a

cloaked resonating water column.

The cloak is comprised of ten iso-

tropic layers. Left: initial design.

Right: cloak specifically optimized

for cloaking at the resonant

frequency.
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