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This work presents a method to determine the effective dynamic properties of resonant metamaterials.

The longitudinal vibration of a rod with periodically attached oscillators was predicted using wave

propagation analysis. The effective mass density and modulus were determined from the transfer

function of vibration responses. Predictions of these effective properties compared favorably with

laboratory measurements. While the effective mass density showed significant frequency dependent

variation near the natural frequency of the oscillators, the elastic modulus was largely unchanged for

the setup considered in this study. The effective mass density became complex-numbered when the

spring element of the oscillator was viscoelastic. As the real part of the effective mass density became

negative, the propagating wavenumber components disappeared, and vibration transmission through

the metamaterial was prohibited. The proposed method provides a consistent approach for evaluating

the effective parameters of resonant metamaterials using a small number of vibration measurements.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4744940]
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I. INTRODUCTION

Interior noise in both turboprop aircraft and helicopters is

often dominated by strong tones. This tonal noise, which

originates from the engine, gearbox, or propeller/rotor, is

transmitted into the interior through both structural and air-

borne paths. Recently, researchers have developed metamate-

rials consisting of a lattice structure of resonators that have

the potential to block sound propagation in specific frequency

bands without adding significant weight to the structure.1

However, the dynamic properties of these resonant metamate-

rials differ from homogeneous materials and require an appro-

priate testing method for their characterization.

Unlike conventional viscoelastic materials used for

vibration control, resonant metamaterials can have a nega-

tive elastic modulus and density.2–11 For instance, a negative

modulus has been observed at ultrasonic frequencies in a

duct lined with an array of Helmholtz resonators.2 Negative

density has been reported in a structure consisting of a net-

work of discrete masses and springs.3–5 Sound transmission

measurements of this type of structure have yielded promis-

ing results for use as noise control materials. Acoustic meta-

materials fabricated with elastic membranes6 and Helmholtz

resonators7 have been used to achieve both negative density

and modulus. The natural frequency of resonators is an

important parameter in determining the frequency bands of

negative modulus and density.2–8 These resonant metamate-

rials have been used to attenuate sound9,10 and to increase

the damping for reduction of sound transmission from flex-

ural vibration of structures.11 The unique properties of meta-

materials were also used for acoustic cloaking,12–14 to

improve focusing and confinement of sounds,15 and to create

new sonic devices.16 To determine the wave propagation

characteristics of electromagnetic and acoustic metamateri-

als, effective parameters are typically obtained by measuring

the reflection and transmission coefficients.17–19 These meth-

ods require anechoic terminations on both source and re-

ceiver sides. Finite element simulation has been used to

investigate the effects of locally resonant structure on wave

propagation, especially on the band gap for vibration insula-

tion.20 Neglecting viscoelasticity of the elastomer used as

the spring element induced a deviation between the meas-

ured and predicted band gap.

For homogeneous materials without internal resonators,

static uniaxial tests can be used to measure elasticity. Typical

vibration and noise control materials used to dissipate

unwanted oscillation energy have viscoelastic properties. In

this case, vibration test methods are commonly used to mea-

sure the frequency dependent complex (dynamic and loss)

modulus.21–25 For acoustic foams, which are used to absorb

sound, impedance measurements are required to obtain both

complex density and propagation speed of the airborne

wave.26,27 Because resonant metamaterials have unique char-

acteristics that differ from conventional homogeneous poly-

mers or foams, it is necessary to develop a new method to

evaluate the effective dynamic properties of such materials.

This study presents a method to determine the wave

propagation characteristics of resonant metamaterials. Theo-

retical models were proposed to analyze the longitudinal

wave propagation along a rod lined with tuned oscillators.

The interaction between the oscillators and the rod for har-

monic vibrations was investigated using the wave approach.

Complex notation was used to include vibration damping in

both the structure and oscillators. Estimation of the effective

mass density and modulus for the metamaterial was per-

formed, and the effects of the constraining method were

evaluated. Laboratory measurements were performed on a
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longitudinally excited rod to validate the analysis. The pro-

posed method enabled direct determination of the effective

parameters of the acoustic metamaterials in a precise and

consistent manner.

II. LONGITUDINAL VIBRATION ANALYSIS

Wave propagation characteristics in a structure interacting

with surrounding media are defined by the density and wave-

number. For homogeneous materials without internal oscilla-

tors, the density is real and can be calculated by dividing the

total mass of the structure by its volume. Complex notation for

the elastic modulus has been widely used to describe rigidity

and damping.21–27 Wave propagation characteristics change

when stiffeners or oscillators are periodically attached to the

structure. For instance, wave propagation is blocked and

reflected back to the source in some frequency bands.28

Figure 1 shows several possible configurations of a con-

strained rod. Figures 1(a), 1(b), and 1(c) depict rods with a

distributed spring attached to a clamped support, with a con-

tinuous oscillator, and with N discrete oscillators separated

by equal distances, respectively. As the number of oscillators

is increased, configuration 1(c) approaches configuration

1(b). As demonstrated in the following sections, the wave

propagation characteristic varies based on the constraint

method.

A. One-dimensional longitudinal vibration

The equation of motion governing a one-dimensional

longitudinal wave is

@

@x
EuA

@u

@x

� �
þ feðx; tÞ ¼ quA

@2u

@t2
; (1)

where u is the longitudinal displacement, assumed to be

small in amplitude, Eu is the elastic modulus, qu is the mass

density of the specimen, A is the cross-sectional area, and fe
is the external force. For a simple harmonic excitation, the

longitudinal displacement is given as

uðx; tÞ ¼ RefûðxÞeixtg: (2)

The steady state solution is obtained as

ûðxÞ ¼ Ĉ1e�ik̂x þ Ĉ2eik̂x; (3)

where Ĉ1;2 are the magnitudes of waves propagating in

theþ and –x directions, respectively, and k is the wavenum-

ber related to the frequency as

k̂
2 ¼ qux

2=Êu: (4)

The constants Ĉ1;2 are found by applying the appropriate

boundary conditions. The complex modulus of elasticity, Êu,

is commonly used to model energy dissipation in the mate-

rial itself. The complex modulus is defined as

ÊuðxÞ ¼
r̂
ê
¼ Ed þ iEl ¼ Ed½1þ ig�; (5)

where r is the stress, e is the strain, Ed and El are the

dynamic and loss moduli, respectively, and g is the loss

factor.

B. Longitudinal vibration of a rod constrained by
distributed elements

When the rod is constrained by springs as in Fig. 1(a),

the equation of motion is

Eu
@2u

@x2
� sau ¼ qu

@2u

@t2
; (6)

where sa denotes the complex stiffness acting per unit vol-

ume of the rod. It was assumed that the cross sectional area

is constant and that any force is applied at the boundaries

(x¼ 0, L). For the spring-constrained rod, the wave number

is obtained as

k̂
2 ¼ ðqux

2 � ŝaÞ=Êu: (7)

When distributed oscillators are attached to the rod as in Fig.

1(b), the equations of motion are

Eu
@2u

@x2
� saðu� wÞ ¼ qu

@2u

@t2
; (8a)

qa

@2w

@t2
þ saðw� uÞ ¼ 0 ; (8b)

where qa is the mass of the oscillator attached per unit vol-

ume of the rod, and w is the displacement of the oscillator

mass. For this oscillator-attached rod, the wavenumber is

related to the circular frequency as

k̂
2 ¼

�
qux

2 þ ŝaqax
2

ŝa � qax2

�
=Êu: (9)

Equations (7) and (9) suggest that spring and mass attach-

ments have effects on the wavenumber of longitudinal wave

FIG. 1. Longitudinally vibrating rods

(a) constrained by distributed springs,

(b) with continuous, and (c) discrete

spring and mass (oscillator) attach-

ments. (d) Excitation of the rod at

one end with the mass attached at the

other end.
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propagations. However, the assumed solution in Eq. (4) is

identical.

C. Influence of dynamic constraints on the effective
properties

In previous studies,3–5 theoretical models of negative

mass and stiffness have been derived for vibrating systems

consisting of a network of discrete masses and springs. From

Eqs. (7) and (9), the effective parameters of a metamaterial

are calculated for the longitudinal vibration of a rod when

constrained by distributed springs. The effective mass den-

sity of the spring-supported rod is obtained as

q̂�u ¼ qu �
ŝa

x2
: (10)

This effective mass density decreases with decreasing fre-

quency. Note that when the spring stiffness is viscoelastic, the

effective mass density is also complex. At frequencies smaller

than the mass-spring resonance frequency, x̂r ¼
ffiffiffiffiffiffiffiffiffiffiffi
ŝa=qu

p
, the

effective mass density becomes negative, and no propagating

wavenumber component exists. Only at frequencies higher

than this resonance frequency does non-decaying longitudinal

wave propagation occur. Following the same approach, the

effective mass density of the rod attached with distributed os-

cillator shown in Fig. 1(b) is calculated as

q̂�u ¼
ŝaðqu þ qaÞ � quqax

2

ŝa � qax2
: (11)

This effective mass density is zero at the mass-spring-mass

resonance (x̂r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝaðqu þ qaÞ=qaqu

p
) and exhibits maxi-

mum value at the oscillator resonance (x̂a ¼
ffiffiffiffiffiffiffiffiffiffiffi
ŝa=qa

p
). For

both rods in Figs. 1(a) and 1(b), the effective modulus is

identical to that of the rod as Ê
�
u ¼ q̂�uc2 ¼ Êu. This suggests

that the external oscillators considered in this study do not

influence the effective stiffness of the system.

D. Longitudinal vibration of a rod with discrete
oscillator attachments—metamaterials

When oscillators are attached to the rods as shown in

Fig. 1(c), corresponding to the configuration of the resonant

metamaterial, the equations of motion are given as

Eu
@2uj

@n2
j

¼ qu

@2uj

@t2
; (12a)

Ma
@2wj

@t2
þ Sa½wj � ujðnj ¼ 0; tÞ� ¼ 0; (12b)

where j ranges from 1 to Nþ 1 in Eq. (12a) and 2 to Nþ 1 in

Eq. (12b), N is the number of oscillators. Ma and Sa are the

mass and spring constant, respectively for a single oscillator.

Assuming harmonic vibration, the resulting displacement of

the rod is given as

ûjðnjÞ ¼ Ĉ1je
ik̂nj þ Ĉ2je

�ik̂nj ; (13)

where j ranges from 1 to Nþ 1 and k̂
2 ¼ qux

2=Êu. The

boundary conditions are applied as

ûjðdjÞ ¼ ûjþ1ð0Þ; (14a)

AEu
@ujðdjÞ
@x

� @ujþ1ð0Þ
@x

� �
¼ �Sa½ujðdjÞ � wj�; (14b)

where j ranges from 1 to N, dj ¼ L=2N for j¼ 1 and Nþ 1,

and dj ¼ L=N otherwise. After applying the boundary condi-

tions at the ends of the rods, x¼ 0 and L, the resulting vibra-

tion of the rod is obtained.

E. Calculations of reflection and transmission
coefficients

Acoustic metamaterials have the potential to block

sound in specific frequency bands without adding significant

weight to the structure. To investigate the wave propagation

characteristics through the rods in Fig. 1(c), it was assumed

that the metamaterial is attached to the middle of an infin-

itely long rod with the same properties with the rod in the

resonant metamaterial. The reflection and transmission coef-

ficients were found after assuming unit amplitude pressure

incidence on x¼ 0 and non-reflecting boundaries on the

transmitted region (x>L). For this configuration, the bound-

ary conditions at x¼ 0 and L were applied as:

Ĉ11 þ Ĉ21 ¼ 1þ R; (15a)

Ĉ11 � Ĉ21 ¼ R� 1; (15b)

Ĉ1;Nþ1eik̂dNþ1 þ Ĉ2;Nþ1e�ik̂dNþ1 ¼ T; (15c)

Ĉ2;Nþ1e�ik̂dNþ1 � Ĉ1;Nþ1eik̂dNþ1 ¼ T; (15d)

where R and T are the reflection and transmission coeffi-

cients, respectively. After solving Eqs. (14) and (15), the

barrier and absorption properties of the acoustic metamateri-

als itself without influence from changing characteristic im-

pedance of the medium were determined. This enabled to

predict the influence of resonator attachments only.

III. DETERMINATION OF EFFECTIVE PROPERTIES
FROM VIBRATION RESPONSES

Effective properties producing the same vibration

response of complex structures have been determined for

resonant metamaterials. Figure 1(d) shows the configuration

used in this study, which is similar to laboratory setups to

measure the viscoelastic properties of polymers.23 In previ-

ous studies,22–25 a single transfer function was sufficient to

obtain the frequency dependent variation of the viscoelastic

properties. In this study, two transfer functions are required

to identify both the effective mass density and the complex

modulus of the metamaterial. When the rod is excited at one

end, the boundary conditions become

ûðx ¼ 0Þ ¼ u0; (16a)

AÊ
�
u

@ûðx ¼ LÞ
@x

¼ Mbx
2ûðLÞ; (16b)

where Mb is the end mass. The transfer function relating the

displacement of the rod to that at x¼ 0 is given as
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ûx

u0

¼ M̂
�
s cos k̂ðL� xÞ �Mbk̂L sin k̂ðL� xÞ

M̂
�
s cos k̂L�Mbk̂L sin k̂L

; (17)

where M̂
�
s ¼ q̂�uLA is the effective total mass. From Eq. (17),

the wavenumber for longitudinal vibration is found from the

roots of the following equation

F̂ ¼ ûx1
=u0 cos k̂L� cos k̂ðL� x1Þ

ûx1
=u0 sin k̂L� sin k̂ðL� x1Þ

� ûx2
=u0 cos k̂L� cos k̂ðL� x2Þ

ûx2
=u0 sin k̂L� sin k̂ðL� x2Þ

; (18)

where x1 and x2 are the two vibration measurement locations.

After measuring the two transfer functions (ûx1
=u0 and

ûx2
=u0), the complex wavenumber, k̂ ¼ kr � iki is solved by

setting F¼ 0 in Eq. (18). Note that Eq. (18) should be di-

vided into real and imaginary parts such that the unknown

real and imaginary parts of the wavenumber are determined

by using numerical methods such as the Newton–Raphson

method. The iterations to solve Eq. (18) are performed as

�
kr

ki

�
jþ1

¼
�

kr

ki

�
j

�
Re

@F̂

@kr
;
@F̂

@ki

� �

Im
@F̂

@kr
;
@F̂

@ki

� �
2
6664

3
7775
�1"

RefF̂g
ImfF̂g

#
:

(19)

In this test method, the attached block must have a nonzero

mass (Mb> 0) to ensure a non-trivial solution is obtained

from Eq. (19). After obtaining the complex wavenumber, the

effective mass density of the rod is calculated as

q̂�u ¼
Mbk̂

A

ûx1
=u0 sin k̂L� sin k̂ðL� x1Þ

ûx1
=u0 cos k̂L� cos k̂ðL� x1Þ

: (20)

Consequently, the effective elastic modulus is calculated

from the wavenumber as Ê
�
u ¼ q̂�u x2=k̂

2
. When the effective

mass and the wavenumber are given, the acoustic character-

istics such as the transmission and reflection coefficients of

an arbitrary length sample can be determined. In the pro-

posed method, the vibration responses at two locations were

used to identify the effective properties. Although the results

did not show a significant variation with the selection of the

vibration measurement locations, it is recommended to

choose two locations that minimized deviations due to lim-

ited dynamic sensitivity of vibration sensors.

IV. RESULTS AND DISCUSSION

A. Numerical study

The proposed transfer function method was applied to the

predicted response of a Plexiglas rod for verification. The

FIG. 2. (Color online) Calculated transfer functions for rods constrained

using different methods. The vibration response was reduced at low frequen-

cies when the rod was constrained by springs connected to a fixed floor.

When constrained by continuous or discrete oscillators, the rod displacement

response was significantly reduced near the oscillator natural frequency of

580 Hz.

FIG. 3. (Color online) Calculated (a) effective modulus and (b) mass density

from predicted transfer functions of rods constrained by different methods.

The passive oscillators considered in this study exhibited minimal influence

on the effective modulus. The effective mass density was complex-

numbered when the spring element of the oscillators was viscoelastic, and

the real part became negative near the oscillator natural frequency.
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mechanical properties of the rod and attached oscillators were

Eu¼ 4.8� (1þ 0.05i) GPa, qu¼ 1151 kg/m3, L¼ 1.03 m,

A¼ 0.235� 10�3 m2, x1¼ L, x2¼ 0.7 L, sa¼ 9.50 (1þ 0.1i)

GN/m4, qa¼ 714 kg/m3 (Sa¼ sa LA/N, Ma¼ qa LA/N), and

Mb¼ 0.198 kg. These were the values used in experiments

described in the following section. Figure 2 shows the pre-

dicted transfer function with various constraints applied to the

vibrating rod (N¼ 15). The most significant change was

observed when the rod was constrained by a spring as in

Fig. 1(a), especially at low frequencies. This change induced

the negative effective mass and consequently disappearance

of the propagating wavenumber components below the mass-

spring resonance frequency, x̂r ¼
ffiffiffiffiffiffiffiffiffiffiffi
ŝa=qu

p
. The resulting

responses obtained for the continuous and discrete oscillators

as in Figs. 1(b) and 1(c), respectively, were similar.

Figure 3 shows the effective properties determined

using the two predicted transfer functions along with

Eqs. (18) and (19). As described in Sec. II, the elastic mod-

ulus changed very little with spring or oscillator attach-

ments. However, there was a significant change in the

effective mass density. For the configuration in Fig. 1(a),

the mass density was negative at frequencies less than 458

Hz, which is the mass-spring resonance frequency, xr. For

the configurations in Figs. 1(b) and 1(c), the effective

mass density exhibited a large positive and then negative

maximum near the resonance frequency of the oscillator, xa.

The magnitude of these positive and negative peaks decreased

with increasing loss factor (g) of the attached oscillators as

shown in Fig. 4. However, this oscillator damping did not

show significant influence on the modulus compared to those

on the effective mass density. When the effective mass

density was negative, the longitudinal wave decayed exponen-

tially as it propagates. Because the loss factor of typical mate-

rials used for noise and vibration control is limited, the large

negative mass density is a significant advantage of resonant

metamaterials for use in noise control.

Figure 5 shows the transmission and reflection coeffi-

cients for the configuration shown in Fig. 1(c). Without os-

cillator attachment (N¼ 0), reflection did not occur (R¼ 0)

as in waves propagating in homogeneous media without

change of characteristic mechanical impedance. Transmission

was reduced only through material damping in the rod itself.

Results are also shown for the N¼ 15 case to investigate

the effects of the oscillators. The natural frequency of each

oscillator was 580 Hz. The reflection coefficient was

large, and the transmission coefficient was small near the os-

cillator resonance frequency. A significant amount of energy

(1� |R|2� |T|2) was dissipated due to damping in the oscilla-

tors. This information could be used to design acoustic meta-

materials that reflect or absorb propagating energy in selected

frequency bands.

FIG. 4. (Color online) Predicted effective mass density for the configuration

in Fig. 1(c) of different loss factors of the attached discrete oscillators. Mag-

nitude of the positive and negative maximums near the natural frequency of

the oscillators decreased due to damping in the oscillators.

FIG. 5. (Color online) Reflection and transmission coefficients predicted for

rods. Transmission of vibration energy was prohibited from oscillator

attachments.

FIG. 6. (Color online) Experimental setup to measure the dynamic proper-

ties of longitudinally vibrating rods attached with multiple oscillators.

FIG. 7. (Color online) Measured transfer functions for rods with and without

discrete oscillator attachments. The natural frequency decreased especially

for the first mode from the influence of the oscillator. The measured values

showed good agreement with the predictions shown in Fig. 2.
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B. Experimental results

Experiments were performed to measure the frequency

dependent variation of the effective properties of the rod

attached with oscillators. Figure 6 shows the experimental

setup. Although the photo shows a horizontal test setup, the

actual test was performed with the rod oriented vertically.

The Plexiglas cylindrical rod was excited at one end by a

shaker, and a mass block was attached to the other end.

Care was taken to excite the rod in the longitudinal direc-

tion while minimizing rod’s flexural vibration. Fifteen

oscillators were attached to the rod. Each oscillator was

composed of a steel mass and a Plexiglas spring. The me-

chanical properties of the rod and oscillators were identical

to those considered for numerical simulation in the previ-

ous section.

Figure 7 shows the measured transfer functions. The

measured response showed good agreement with the predic-

tion in Fig. 2. The vibration amplitudes (/ u(x)/u0) decreased

significantly at the oscillator resonance frequency, xa. Using

the measured values and Eq. (19), the effective properties of

the acoustic metamaterial were determined as shown in

Fig. 8. As seen in the predicted deviation due to the oscilla-

tors, the elastic moduli showed negligible variation with fre-

quency. The variations observed for measured values below

200 Hz were produced from a large sensitivity25 related to

the small phase difference between the measured vibrations

using accelerometers. The effective mass density ranged

from large positive to large negative values near the natural

frequency of the oscillators. The imaginary part of the mass

density showed significant variation in a different manner

compared to the real part; this should be taken into consider-

ation for precise estimation of the effective properties. This

mass density is one of the fundamental parameters determin-

ing the vibroacoustic properties of the structures.

V. CONCLUSIONS

This study proposed a procedure that can be used to

measure or predict the effective dynamic properties of reso-

nant metamaterials. The derivation utilized complex values

for both the modulus and the mass density to account for

the structural vibration damping. The wavenumber for the

longitudinal vibration of a rod was obtained from either

measured or predicted responses. The frequency dependent

variation of the mass density and modulus was calculated

from this complex wavenumber. The effective modulus

showed very little variation when periodic oscillators were

attached to the rod. However, the effective mass density

exhibited significant variation. The real part of the mass

density became negative near the oscillator resonance fre-

quency. This result corresponded to a stop-band where the

energy did not propagate down the length of the rod but

instead was reflected back to the source. The imaginary

part of the mass density varied as well; this suggests that

complex notation should be utilized to better understand

the vibration absorption characteristics of resonant meta-

materials. Although the proposed method was applied to

rods attached with identical oscillators for comparison pur-

poses, it could also be applied to structures constrained by

oscillators of different masses and resonance frequencies.

The proposed experimental method does not require non-

reflecting boundary conditions to measure the reflection

and transmission coefficients and would be useful for char-

acterizing a wide variety of acoustic metamaterials in the

laboratory.
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